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La science quantique

Une vision singulière

XIII) superconducting qubits

P.A. Besse
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PAB Schéma global: paire de qubits couplés
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Guide d’onde coplanaire et

Résonateur harmonique LC
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PAB Coplanar Waveguide (CPW) Resonator

Similaire aux câbles coaxiaux:
Résonateur LC «distribué»

J.C Besse, ETH Thesis 27386
https://qudev.phys.ethz.ch/static/content/science/Documents/seme
ster/Junxin_Chen_SemesterThesis_150318.pdf

Ldx
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PAB Coplanar Waveguide (CPW) Resonator

J.C Besse, ETH Thesis 27386

J.C Besse, ETH Thesis 27386

«câble coaxial»

Al ou Niobium

T<100mK

Highly resistive Si-wafer

12 310 10cm k cm  

Al-Ti-Al bridge

S SW

W=10um,  S=5um
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PAB Résonateur

J.C Besse, ETH Thesis 27386
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PAB Coplanar waveguide resonator

Goppl, M. et al. “Coplanar waveguide resonators for circuit quantum 
electrodynamics.” Journal of Applied Physics 104 (2008): 113904. https://link.springer.com/article/10.1007/s42452-022-04956-7
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PAB Coplanar waveguide resonator

Souquet J.R. et al.. (2014). Photon-assisted tunneling with non-
classical light. Nature communications. 5. 10.1038/ncomms6562. 

/2 wave

/4 wave

Krantz, Philip. (2013). 
Parametrically pumped
superconducting circuits. 
10.13140/RG.2.1.1071.3041. 

Delbecq, Matthieu. (2012). 
Coupling quantum dot circuits 
to microwave cavities. 

 wave

 wave
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PAB Harmonic oscillator

Hamiltonien:
221
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Toutes les transitions
sont aléatoirement

possibles

- Utilisé en sortie
comme détecteur

- Autre device nécessaire
comme qubit
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PAB

Jonctions de Josephson

et 

squids



p.12.15 “Coupleurs”Pierre-André Besse 2025

PAB Jonction de Josephson: résumé

Effet tunnel pour des paires de Cooper à des températures de mK.
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PAB Hamiltonien «inductif»
d’une jonction de Josephson
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PAB Squid sans champ magnétique:
deux jonctions de Josephson en parallèle
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PAB Rappel: Effet Aharonov-Bohm

B


A


B A 
 



Hamiltonien:
2

1

2 e

H qA
m i

    
 


Modes propres: 1

1
ie   2

2
ie  

Phase de Berry
0

xq
A dl   


 1 2 2 mag

q q q
A dl B dS

h
                

 
 

1
1

ie  

2
2

ie  



p.13.24 “Superconducting qubits”Pierre-André Besse 2025

PAB Squid avec champ magnétique
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Résonateur anharmonique:

Qubit supraconducteur
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PAB Résonateur anharmonique: Principe
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PAB Résonateur anharmonique: étude
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PAB Design des transmons avec squid
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PAB Exemples de transmons
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https://www.nature.com/articles/s41534-019-0185-4

Exemples de transmons
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J.-C. Besse, private communication

1um
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PAB

Couplage 

avec un résonateur:

Mesures en résonnance
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PAB Principe général de mesure
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PAB Transmon et résonateur couplés:
Mesures en résonnance

Chaque point de la figure 
correspond à une moyenne 
sur env. 10’000 mesures

Très faible signal !!
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J. Fink et al., Nature (London)454, 315 (2008)
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PAB Transmons et résonateur couplés:
exemples
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PAB Transmon et résonateur couplés:
exemples

https://blog.qutech.nl/2017/08/13/how-to-make-artificial-atoms-out-of-electrical-circuits-part-ii-circuit-quantum-electrodynamics-and-the-transmon/
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Qubit supraconducteur:

Régime dispersif et 

Mesures en quantum non-demolition
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PAB

Qubit supraconducteur:

Rotation Z
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Qubit supraconducteur:

Rotation X et Y
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PAB Rappel:
Exercice 9.2: Hamiltonien d’excitation
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Qubit supraconducteur:

Paire de qubits couplés

(iSWAP)
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PAB Paire de Qubits couplés
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Devices et 

setup de mesure:

exemples
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JC Besse, Quantum Device Lab, ETH Zurich

Capa du qubit

Squid
du qubit

Courant 
(rotation en Z)

Ligne de 
couplage
vers la sortie

Couplage avec
résonateur

Excitation
(rotation en X et Y)

500um

100um

20um
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PAB Mesures en cryogénie
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PAB Ordinateur Quantique: EPFL

Aluminium Transmon Qubits

Quantum Dots in Germanium Heterostructures
5-10 GHz Printed Circuit Board hosting the device

10 mK Dilution Refrigerator in HQC

100 nm
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Nature Physics | VOL 16 | August 2020 
| 875–880 | 
www.nature.com/naturephysics

Qubit et lignes de couplage

ETH
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Nature Physics | VOL 16 | August 2020 
| 875–880 | www.nature.com/naturephysics

Puce avec 7 qubits

ETH
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PAB Ordinateur Quantique: ETH

Quantum Device Lab, ETH Zurich

Quantum Device Lab, ETH Zurich

Quantum Device Lab, 
ETH Zurich

Nature Physics | VOL 16 | August 2020 
| 875–880 | www.nature.com/naturephysics

5-10 GHz
10 mK
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Mesures de Qubits:

- Fréquence de Rabi

- Relaxation, mesures de T1

- Décohérence
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PAB 1) Fréquence de Rabi:
Excitation
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PAB 1) Fréquence de Rabi:
Résultats
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Chaque point de la figure 
correspond à une moyenne 
sur env. 10’000 mesures
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PAB 2) Relaxation

Relaxation: Temps T1
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PAB 2) Mesure du temps de relaxation T1
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PAB 3) Décohérence dans le plan X,Y

t

Décohérence: Temps T2* (T2)
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PAB

Exercices
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PAB Exercice 13.1: mesure par 
quantum non-demolition

0
r

( )JL 

gC

qC

z

x

y

 Mesure

Le qubit est dans l’état de base, 

- Nous appliquons une impulsion en X de /2

- Nous faisons directement (en négligeant la relaxation et 
la décohérence) une mesure par quantum non-demolition.

Indiquez, sur la sphère de Bloch, l’évolution du qubit.



p.13.76 “Superconducting qubits”Pierre-André Besse 2025

PAB Exercice 13.2: effet Zénon

( )JL 

gC

qC

A
q L  

Au temps t=0, le qubit est dans l’état de base, 
Nous appliquons en continu un signal d’excitation à la fréquence
de Larmor correspondant à la résonance du qubit (wq=L). 
Le qubit évolue à la fréquence de Rabi R.

1) Le système de mesure par non-démolition (excitation par injection
de photons dans le résonateur et mesure électronique de la 
transmission) est enclenché à intervalles R.T=
Quels sont les signaux détectés ?
«0» = état de base, «1» = état excité

0
r
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PAB Exercice 13.2: effet Zénon

( )JL 

gC

qC

A
q L  

Au temps t=0, le qubit est dans l’état de base, 
Nous appliquons en continu un signal d’excitation à la fréquence
de Larmor correspondant à la résonance du qubit (wq=L). 
Le qubit évolue à la fréquence de Rabi R.

2) Le système de mesure par non-démolition (excitation par injection
de photons dans le résonateur et mesure électronique de la 
transmission) est enclenché à intervalles R.T=.
Quels sont les signaux détectés ?
«0» = état de base, «1» = état excité

0
r
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PAB Exercice 13.2: effet Zénon

( )JL 

gC

qC

A
q L  

3) Le système de mesure par non-démolition (excitation par injection
de photons dans le résonateur et mesure électronique de la 
transmission) fonctionne en continu. 
Quels sont les signaux détectés ?
«0» = état de base, «1» = état excité

0
r
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PAB Exercice 13.2: effet Zénon

( )JL 

gC

qC

A
q L  

4) Seule l’excitation par injection de photons fonctionne 
en continu. La mesure électronique de la 
transmission est elle enclenché à intervalles R.T=
Quels sont les signaux détectés ?
«0» = état de base, «1» = état excité

0
r
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PAB

t
Excitation
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variable
Mesure
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Exercice 13.3 Mesures de décohérence: 
analysez ce cas, mesure de T2*


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PAB Exercice 13.4: Mesures de décohérence:
analysez ce cas: mesure de T2
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PAB Exercice 13.4: Mesures de décohérence:
analysez ce cas: mesure de T2
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