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La science quantique
Une vision singuliere

XIII) superconducting qubits
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PUSB Schéma global: paire de qubits couplées

Controle Controle

* Cou[;iage *
T —— T >

Cg u I Cg |
Controle Controle |
— X |§| — X Iﬁ
C, C,
T T
= = L
Qubit 1 Qubit 2 Déteteur

Pierre-André Besse p.13.2 “Superconducting qubits” 2025



Guide d’onde coplanaire et

Résonateur harmonique LC
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PUPB Coplanar Waveguide (CPW) Resonator

~ cowpling

- capacitorgap

Similaire aux cables coaxiaux:
Résonateur LC «distribué»
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J.C Besse, ETH Thesis 27386
https://qudev.phys.ethz.ch/static/content/science/Documents/seme
ster/Junxin_Chen_SemesterThesis 150318.pdf
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PUPB Coplanar Waveguide (CPW) Resonator

(a)

Al-Ti-Al bridge

Al ou Niobium

—Pre——r—>
S AW S

J.C Besse, ETH Thesis 27386
Highly resistive  Si-wafer
(b)

~10%em™> 510 kQ-cm

T<100mK
W=10um, S=5um

«cable coaxial»

J.C Besse, ETH Thesis 27386

Pierre-André Besse p.13.6 “Superconducting qubits”

2025



2R Résonateur

J.C Besse, ETH Thesis 27386
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PUSB Coplanar waveguide resonator

Goppl, M. et al. “Coplanar waveguide resonators for circuit quantum
electrodynamics.” Journal of Applied Physics 104 (2008): 113904. https://link.springer.com/article/10.1007/s42452-022-04956-7
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PUSB Coplanar waveguide resonator

A2 wave A wave

_ Tunnel junction/QPC Delbecq, Matthieu. (2012).
Coupling quantum dot circuits
to microwave cavities.

Souquet J.R. et al.. (2014). Photon-assisted tunneling with non-
classical light. Nature communications. 5. 10.1038/ncomms6562.
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-.(]) afB Harmonic oscillator
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PUPB

Resonator

Toutes les transitions
sont aléatoirement
possibles

Résonateur harmonique

Transmission

& o |

44—
w%

- Utilisé en sortie
comme détecteur

Harmonic

\/
I @, spectrum

- Autre device nécessaire
r comme qubit

Pierre-André Besse
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Jonctions de Josephson
et

squids

Pierre-André Besse p.13.14 “Superconducting qubits” 2025



PUSB Jonction de Josephson: résumé

Effet tunnel pour des paires de Cooper a des températures de mK.
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PARB | Han.nlton.len «inductib»
d’une jonction de Josephson

anharmonicité

Pour une jonction de Josephson: /\

1 11 (¢ ) \
H =E =— 1—cos(Ap))z——| 22 | A@p*LO(AQ"
) =E; =5 Iidh (1= cos(Ap)) L (mj o O w}
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Pierre-André Besse p.13.16 “Superconducting qubits” 2025



fP afB Résonateur anharmonique

anharmonicité

/
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PARB S.qu1d' sans champ magnétique: |
deux jonctions de Josephson en parallele

V Phases
Il Ag Ap =Ap, =Agp

Courants
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Rappel: Effet Aharonov-Bohm

B=VxA4
Hamiltonien:
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IaARB Squid avec champ magnétique
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Résonateur anharmonique:

Qubit supraconducteur
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Résonateur anharmonique: Principe

q
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fP afB Résonateur anharmonique: étude
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PUPB

Design des transmons avec squid
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PUPB Exemples de transmons

5mm (f;=6.5GHz)
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Exemples de transmons

Flux

CPW

L, L,
C|
=—]— |n
Out

Josephson junctions

EHT = 3.00kV Signal A = SE2 Date 11 Jan 2018
WD = 3.7 mm Photo No. = 2293 Time :14:30:24

a4

B
g

https://www.nature.com/articles/s41534-019-0185-4
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PUPB

Couplage

avec un résonateur:

Mesures en résonnance
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PUSB Principe général de mesure

Ground
g)

Mesures en Z

> Y
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PUSB Transmon et résonateur découples

Mesures en résonnance
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@ : :
PUSB Transmon et résonateur couplés
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@ : :
PUSB Transmon et résonateur couplés
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@ : :
PUSB Transmon et résonateur couplés
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PAB Transmon et résonateur couplées:
J ,
Mesures en résonnance

J. Fink et al., Nature (London)454, 315 (2008)
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Transmons et résonateur couples:
exemples

Capacitive

Transmon

Transmission-line )
resonator

100 zm

Pierre-André Besse

p.13.45 “Superconducting qubits”

2025



a ; ‘o
PLUPB Transmon et résonateur couplés
exemples

1 chip close up: Josephson junction

P
‘ 0.2 mm

- ‘ C——"_
*® flux i.’ii;'i“ line S{“"Tpa:
—

\_“
\ \
\
\\
“

iInput / output SQUID Ioop

https://blog.qutech.nl/2017/08/13/how-to-make-artificial-atoms-out-of-electrical-circuits-part-ii-circuit-quantum-electrodynamics-and-the-transmon/
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PUPB

Qubit supraconducteur:
Régime dispersif et

Mesures en quantum non-demolition
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PURB

Transmon et résonateur en régime dispersif
determiner la fréquence de résonnance du qubit
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g)m Transmon et résonateur en régime dispersif
determiner la fréquence de résonnance du qubit
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PUPB

Qubit supraconducteur:

Rotation G,
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2R Rotation en Z

Control of @,

> Y ‘[DC
= — |§§|LJ<¢> X | o,
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Controle de la fréquence

L L2
&)q (¢) — \/LJ (¢) Cq \/COS[ﬂ_ ¢0)
\ \\ // 0.8 | \ / \\ /.’ *
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Qubit supraconducteur:

Rotation oy et Gy
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PARB Rappel:

Exercice 9.2: Hamiltonien d’excitation

Oscillateur Harmonique L.C

H o~-C. V. V=CV
(C+Ce) V.
(. ——
5 1/4 Vv
o C, | 7 -(C+Ce) l (a _a)
© Cc+C ¢ 4-L ' c 1
L
1
0 —i =
H,=gV,: =gV, -oy
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Controle par couplage capacitif AC dans

le référentiel tournant

In rotating frame

VAC(a)q) * Oy Oy

Al

g

A |

X

{7
L, [X] GD;

=

Control of @,

Pierre-André Besse

p.13.57 “Superconducting qubits”

2025
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Qubit supraconducteur:

Paire de qubits couples

(iISWAP)
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PUB Paire de Qubits couplés
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Devices et
setup de mesure:

exemples
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PURB

Excitation

_ Couplage avec
- (rotation en X et Y) ] r6s OE atgur Capa du qubit
Ligne de
[ couplage

vers la sortie

Squid
du qubit

Courant
(rotation en Z)

JC Besse, Quantum Device Lab, ETH Zurich
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Example : capacitively coupled transmons with individual readout
(Saclay, 2011)

fast flux line

W\/\r’ eiw coupling capacitor m
W~ | J' yan

—H) HXKY H ] H (] FE DM H—

/4 JJ 24 _I
| ] f )
| | Transmon :
: i(t)
Readout Resonator qubit

readout y p qubits : 1 mm
’ 4 4 \
resonator 7 | | l lf, i T

et S
Y L

R Nt ~ frequency

coupling
l control
Cs lp lLll(J]
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IaB Ordinateur Quantique: EPFL H QC:

Hybrid Quantum Circuits

Aluminium Transmon Qubits

6
Time, t (us)

Quantum Dots in Germanium Heterostructures

Sicap (1nm)
8i;,Gey s (22 nm)
Ge QW (16 nm)

Sig2Geg (0.3 pm)

graded Si; ,Ge, (0.7 ym)

Ge (1.5 ym)

Si-001 substrate

100 nm
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- Coupling
resonators
- Charge lines - Flux lines

Readout
resonators

Nature Physics | VOL 16 | August 2020
| 875-880 |
www.nature.com/naturephysics
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PARB Puce avec 7 qubits

Nature Physics | VOL 16 | August 2020
| 875-880 | www.nature.com/naturephysics
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PURB

1mm

QUDEV

Ordinateur Quantique: ETH

\ATITOTS S TV

D1

,maq;rpu’ ,

5-10 GHz
10 mK

: Coupling
@T@ Quits resonators
- Charge lines - Flux lines

Readout "
- resonators - Fircehfikers

I Feedine  Nature Physics | VOL 16 | August 2020
| 875-880 | www.nature.com/naturephysics
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Mesures de Qubits:
- Fréquence de Rabi
- Relaxation, mesures de T,

- Décohérence
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PURB

V(w)=T-cos(w-t)

v

all

1) Fréquence de Rabi:
Excitation

||
Sl
X<

=8

Bl R
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PARB 1) Frequ,ence de Rabiu:
Résultats

Chaque point de la figure

Av=0-0o, correspond a une moyenne
sur env. 10°000 mesures

e
-l
o

ot
00

o
o

Excited state population P
o
B
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PUSB 2) Relaxation

Relaxation: Temps T'1

N, DN O O, D

=|
\ 4
<
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\ 4
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<
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PUSB 2) Mesure du temps de relaxation T'1

L

. . Mesure
Excitation MW‘M T variable / Pe(f)
’i > 1
" %% SPA % %
1 _
P(t)_e—t/Tl

0!

0 T

T1
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PUSB 3) Décohérence dans le plan X,Y

Décohérence: Temps T2" (T2)

/ rapide /
7 7 7

Qubit moyen

Ny (N5 (N5 (N5
2 \/ \J

v

=
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Exercices
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PAB Exercice 13.1: mesure par
quantum non-demolition

we Le qubit est dans 1’¢tat de base,
g

| - Nous appliquons une impulsion en X de n/2

- Nous faisons directement (en négligeant la relaxation et
la décohérence) une mesure par quantum non-demolition.

|l
ol

=

S

Indiquez, sur la sphere de Bloch, 1’évolution du qubit.

ﬁl /2 Mesure
»>y = =
_/ .

=
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2R Exercice 13.2: effet Zénon

w,=Q, [:

| Au temps t=0, le qubit est dans 1’¢état de base,

Nous appliquons en continu un signal d’excitation a la fréquence
/ de Larmor correspondant a la résonance du qubit (w, =€).

I}Zl /(9) M Le qubit évolue a la fréquence de Rabi Q).

OQQI

1) Le systeme de mesure par non-démolition (excitation par injection
de photons dans le résonateur et mesure ¢lectronique de la

= transmission) est enclenché a intervalles Q. T=n

Quels sont les signaux détectés ?

«0» = état de base, «1» = état excité
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2R Exercice 13.2: effet Zénon

w,=Q, [:

| Au temps t=0, le qubit est dans 1’¢état de base,

Nous appliquons en continu un signal d’excitation a la fréquence
de Larmor correspondant a la résonance du qubit (w, =€).

Le qubit évolue a la fréquence de Rabi Q).

|l
ol

=

S

2) Le systeme de mesure par non-démolition (excitation par injection
de photons dans le résonateur et mesure €lectronique de la
transmission) est enclenché a intervalles Qp. T=m/2.

Quels sont les signaux détectés ?
«0» = état de base, «1» = état excité

Pierre-André Besse p.13.77 “Superconducting qubits” 2025



2R Exercice 13.2: effet Zénon

w,=Q, [:

3) Le systeme de mesure par non-démolition (excitation par injection
de photons dans le résonateur et mesure ¢lectronique de la

I}Z' L,(#) M transmission) fonctionne en continu.

Quels sont les signaux détectés ?

«0» = état de base, «1» = état excité

mﬁl
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Exercice 13.2: effet Zénon

>

|l
ol

=

S

4) Seule I’excitation par injection de photons fonctionne
en continu. La mesure ¢lectronique de la
transmission est elle enclenché a intervalles ;. T=n
Quels sont les signaux détectés ?

«0» = état de base, «1» = état excité
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g)m Exercice 13.3 Mesures de décohérence:
analysez ce cas, mesure de T2*

n/2§
Excitation m T variable
NS
% 2 ? 2 2
+ P
1__
0 A
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g)m Exercice 13.4: Mesures de décohérence:
analysez ce cas: mesure de T2

Excitation

pa % ..... N “ \ lent \ _
','I \\‘\ Y} y 9
’.\\ >—>37 J > >  +
S rapide
v ;
X X

~

2l

V
N

ya'
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g)m Exercice 13.4: Mesures de décohérence:
analysez ce cas: mesure de T2

P
Excitation m t/2 MMMHMNMM T/2

=|

v
<|
=
<|
=I
v
<|

Pierre-André Besse p.13.82 “Superconducting qubits” 2025



